SPECIMEN MATERIAL

A-level CHEMISTRY (7405/2)

Paper 2: Organic and Physical Chemistry

Specimen 2015

Session

Time allowed: 2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show all your working.

Information

• The maximum mark for this paper is 105.

Please write clearly, in block capita	als, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

Answer **all** questions.

This question involves the use of kinetic data to deduce the order of a reaction and calculate a value for a rate constant.

The data in **Table 1** were obtained in a series of experiments on the rate of the reaction between compounds **A** and **B** at a constant temperature.

Table 1

Experiment	Initial concentration of A / mol dm ⁻³	Initial concentration of B / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.12	0.26	2.10 × 10 ⁻⁴
2	0.36	0.26	1.89 × 10 ⁻³
3	0.72	0.13	3.78 × 10 ⁻³

0	1	. 1	Show how these data can be used to deduce the rate expression for the between A and B .	reaction
				[3 marks]

The data in **Table 2** were obtained in two experiments on the rate of the reaction between compounds **C** and **D** at a constant temperature.

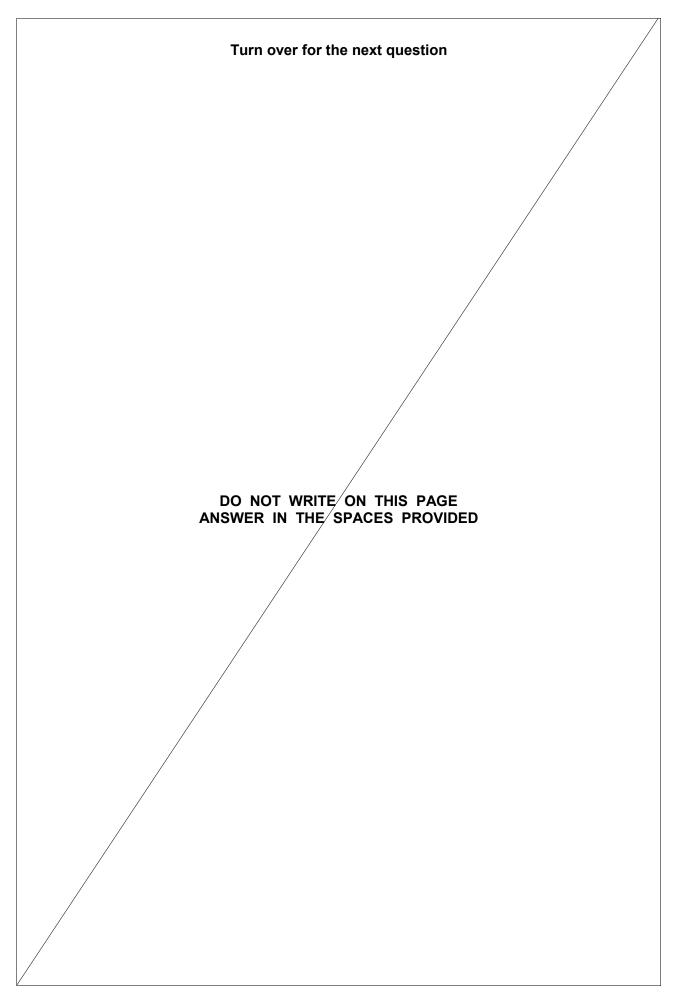
Table 2

Experiment	Initial concentration of C / mol dm ⁻³	Initial concentration of D / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
4	1.9 × 10 ⁻²	3.5 × 10 ⁻²	7.2 × 10 ⁻⁴
5	3.6 × 10 ⁻²	5.4 × 10 ⁻²	To be calculated

The rate equation for this reaction is

rate =
$$k[\mathbf{C}]^2[\mathbf{D}]$$

0	1	2	Use the data from	om experiment 4 to	calculate	a value for th	e rate constant	, <i>k</i> , at this
				Deduce the units of a				
								[3 marks]

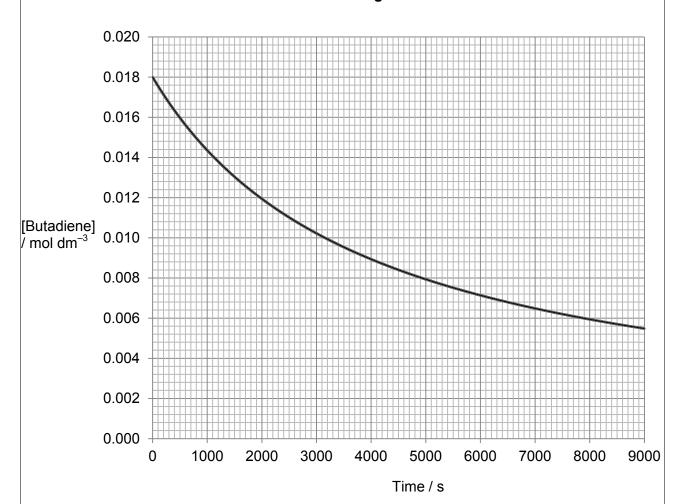

0 1 . 3 Calculate a value for the initial rate in experiment 5.

[1 mark]

Initial rate =
$$\mod \text{dm}^{-3} \text{ s}^{-1}$$

Question 1 continues on the next page

0 1 . 4	The rate equation for a reaction is	
	rate = k[E]	
	Explain qualitatively why raising the temperature by 10 °C has a much greeffect on the rate of the reaction than doubling the concentration of E .	eater [3 marks]
0 1 . 5	A slow reaction has a rate constant $k = 6.51 \times 10^{-3} \text{ mol}^{-1} \text{ dm}^3$ at 300 K.	
	Use the equation $\ln k = \ln A - E_a/RT$ to calculate a value, in kJ mol^{-1} , for activation energy of this reaction.	the
	The constant $A = 2.57 \times 10^{10} \text{ mol}^{-1} \text{ dm}^3$. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	[2 marks]
	Activation energy =	



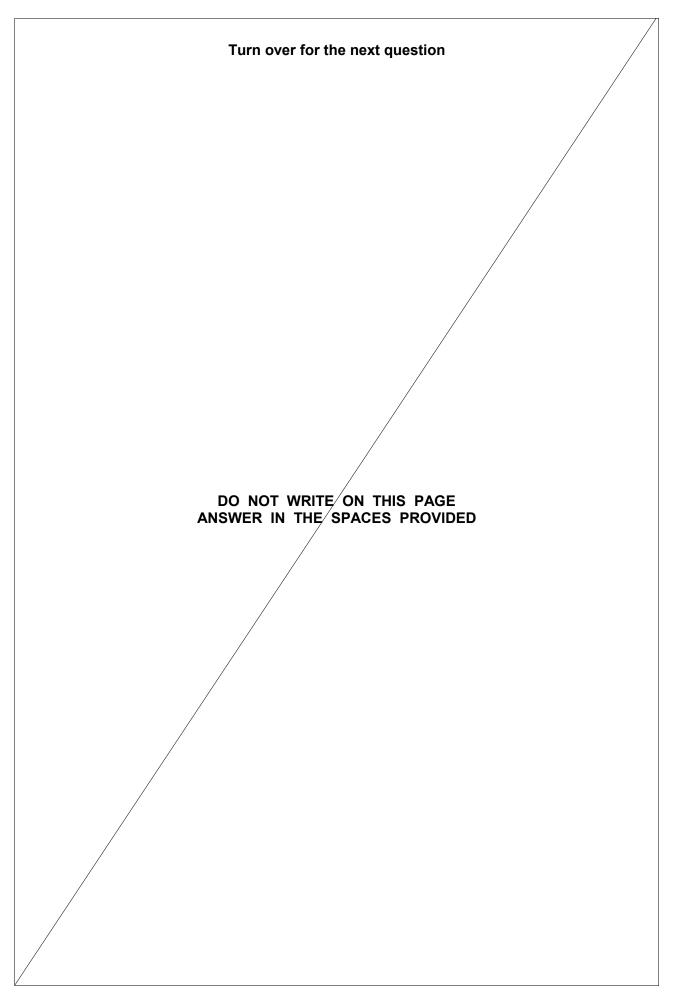
2 Butadiene dimerises according to the equation

$$2C_4H_6 \longrightarrow C_8H_{12}$$

The kinetics of the dimerisation are studied and the graph of the concentration of a sample of butadiene is plotted against time. The graph is shown in **Figure 1**.

Figure 1

0 2 • **1** Draw a tangent to the curve when the concentration of butadiene is 0.0120 mol dm⁻³.

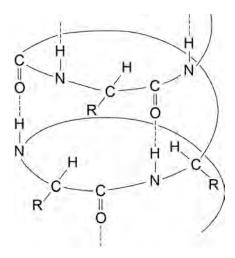

[1 mark]

0 2 . 2	The initial rate of reaction in this experiment has the value $4.57 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$. Use this value, together with a rate obtained from your tangent, to justify the order of the reaction is 2 with respect to butadiene.	nat the 5 marks]
	Turn over for the next question	

3	Isooctane (C ₈ H ₁₈) burns smoothly in Figure 2 .							
		Fi	igure 2					
0 3 . 1	Give the IUPAC n	ame for isooct	tane.					[1 mark]
0 3 . 2	Deduce the numb	er of peaks in	the ¹³ C	NMR sp	oectrum	of isood	ctane.	[1 mark]
Only one ar	nswer is allowed.							
Completely	fill in the circle alor	ngside the app	oropriate	answe	r.			
CORRECT METH	OD WRONG M	ETHODS 🕸 🧐		Φ				
If you want	to change your ans	swer you must	cross o	ut your	original	answer	as show	n. 💌
If you wish t select as sh	o return to an ansv	ver previously	crossed	d out, rin	ng the a	nswer y	ou now w	vish to
	5	0						
	6	0						
	7	0						
	8	0						

0 3 . 3	Isooctane can be formed, together with propene and ethene, in a reaction in which one molecule of an alkane that contains 20 carbon atoms is cracked.
	Using molecular formulas, write an equation for this reaction. [1 mark]
0 3 . 4	How do the products of the reaction in Question 3.3 show that the reaction is an example of thermal cracking? [1 mark]
0 3 . 5	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers. [2 marks]
	Number of monochloro isomers
	Structure
0 3 . 6	An isomer of isooctane reacts with chlorine to form only one monochloro compound.
	Draw the skeletal formula of this monochloro compound. [1 mark]
	Question 3 continues on the next page

$\overline{\bf 0}$ $\overline{\bf 3}$. $\overline{\bf 7}$ A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes $^{35}{\rm Cl}$ and $^{37}{\rm Cl}$ in the ratio 1.5 : 1.0 Calculate the $M_{\rm r}$ of this monochlorooctane.
 M_r =
[3 marks
Molecular formula =



4	Alcohol \mathbf{A} (CH ₃) ₂ CHCH(OH)CH ₃ undergoes reactions separately with acidi potassium dichromate(VI) and with concentrated sulfuric acid.	ified
0 4 . 1	Deduce the IUPAC name for alcohol A .	1 mark]
0 4 . 2	Draw the structure of the organic product, ${\bf B}$, formed when ${\bf A}$ is oxidised in treaction with acidified potassium dichromate(VI).	the 1 mark]
0 4 . 3	Two isomeric alkenes, C and D , are formed when A is dehydrated in the rewith concentrated sulfuric acid. Name the mechanism for this dehydration reaction.	action 1 mark]
0 4 . 4	Draw the structure of each isomer. [2] Isomer C Isomer D	marks]

0 4 . 5	Name the type of structural isomerism shown by C and D .	[1 mark]
0 4 . 6	List alcohol A , product B and isomer C in order of increasing boiling point.	[1 mark]
0 4 . 7	Draw the structure of the isomer of A that is not oxidised by acidified potassium dichromate(VI).	[1 mark]
0 4 . 8	Draw the structure of the isomer of A that cannot be dehydrated to form a	n alkene
	by reaction with concentrated sulfuric acid.	[1 mark]
	Turn over for the next question	

Figure 3 shows a simplified representation of the arrangement of some amino acids in a portion of a protein structure in the form of an α -helix.

Figure 3

0 5 . 1	Name the type of protein structure in Figure 3 . [1 mark]
0 5 . 2	Explain the origin of the interaction represented by the dotted lines in Figure 3 . [4 marks]

The tripeptide shown in **Figure 4** is formed from the amino acids glycine, threonine and lysine.

Figure 4

0 6 . 1 Draw a separate circle around **each** of the asymmetric carbon atoms in the tripeptide in **Figure 4**.

[1 mark]

0 6 . 2 Draw the zwitterion of glycine.

[1 mark]

0 6 . 3 Draw the structure of the species formed when glycine reacts with an excess of bromomethane.

[1 mark]

0 6 . 4 Deduce the IUPAC name of threonine.

[1 mark]

0 6 . 5 Draw the structure of the species formed by lysine at low pH.

[1 mark]

7 Repeating units of two polymers,	, P and Q , are shown in Figure 5 .
---	--

Figure 5

0	7		1	Draw the structure of the monomer used to form polymer P
		ı		Name the type of polymerisation involved.

[2 marks]

Monomer

Type of polymerisation _

0 7 . 2 Draw the structures of **two** compounds that react together to form polymer **Q**. [2 marks]

Structure of compound 1

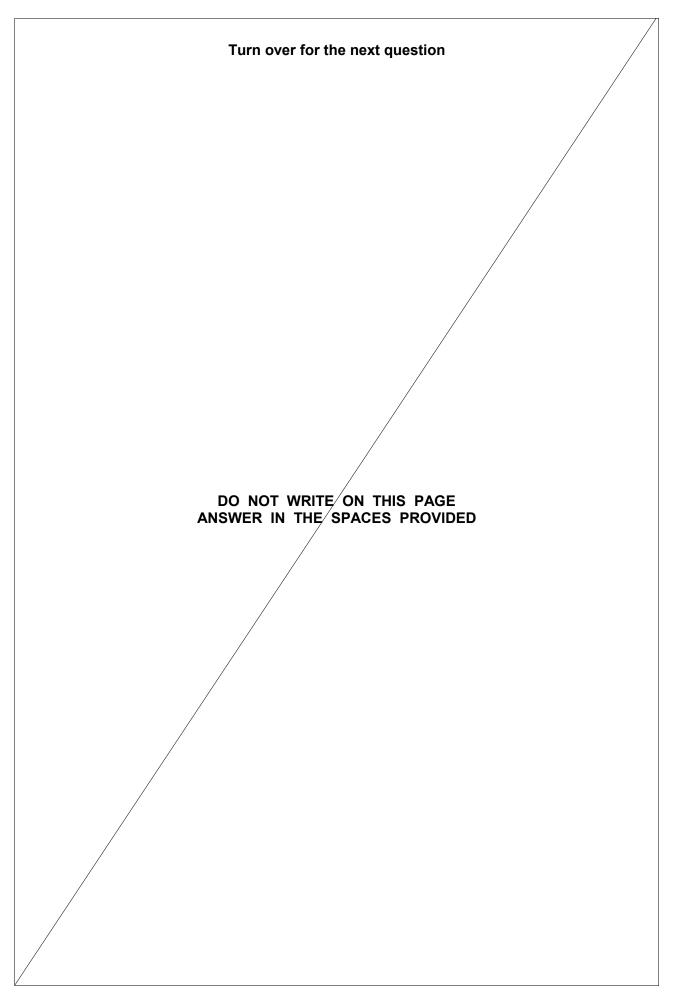
Structure of compound 2

0 7 . 3	Suggest an environmental advantage of polymer Q over polymer P . Justify your answer.	[3 marks]
	Advantage	
	Justification	
	Turn over for the next question	

8 The anticancer drug cisplatin operates by reacting with the guanine in DNA.

Figure 6 shows a small part of a single strand of DNA. Some lone pairs are shown.

Figure 6


0 8 . 1 The DNA chain continues with bonds at X and Y.

State the name of the sugar molecule that is attached to the bond at ${\bf X}$.

[1 mark]

Figure 7 shows two bas	ses used in RNA.
	Figure 7
H—N ON Irest of	ON N [rest of molecule]
0	
messenger RNA is synt	thesised. nat you have chosen forms a base pair with guanine.
Suggest which of the ba messenger RNA is synt	ases A and B forms a pair with guanine in Figure 6 withesised. That you have chosen forms a base pair with guanine.
Suggest which of the ba messenger RNA is synt	ases A and B forms a pair with guanine in Figure 6 withesised. That you have chosen forms a base pair with guanine.
Suggest which of the ba messenger RNA is synt	ases A and B forms a pair with guanine in Figure 6 withesised.
Suggest which of the ba messenger RNA is synt	ases A and B forms a pair with guanine in Figure 6 withesised. That you have chosen forms a base pair with guanine.
Suggest which of the ba messenger RNA is synt	ases A and B forms a pair with guanine in Figure 6 vithesised. That you have chosen forms a base pair with guanine.

08.3	Cisplatin works because one of the atoms on guanine can form a co-ordinate bond with platinum, replacing one of the ammonia or chloride ligands. Another atom on another guanine can also form a co-ordinate bond with the same platinum by replacing another ligand. On Figure 6 , draw a ring round an atom in guanine that is likely to bond to platinum. [1 mark]
0 8 . 4	An adverse effect of cisplatin is that it also prevents normal healthy cells from
	replicating.
	Suggest one way in which cisplatin can be administered so that this side effect is minimised.
	[1 mark]

9 1,4-diaminobenzene is an important intermediate in the production of polymers such as Kevlar and also of polyurethanes, used in making foam seating.

A possible synthesis of 1,4-diaminobenzene from phenylamine is shown in **Figure 8**.

Figure 8

0 9 . 1 A suitable reagent for step 1 is CH₃COCl

Name and draw a mechanism for the reaction in step 1.

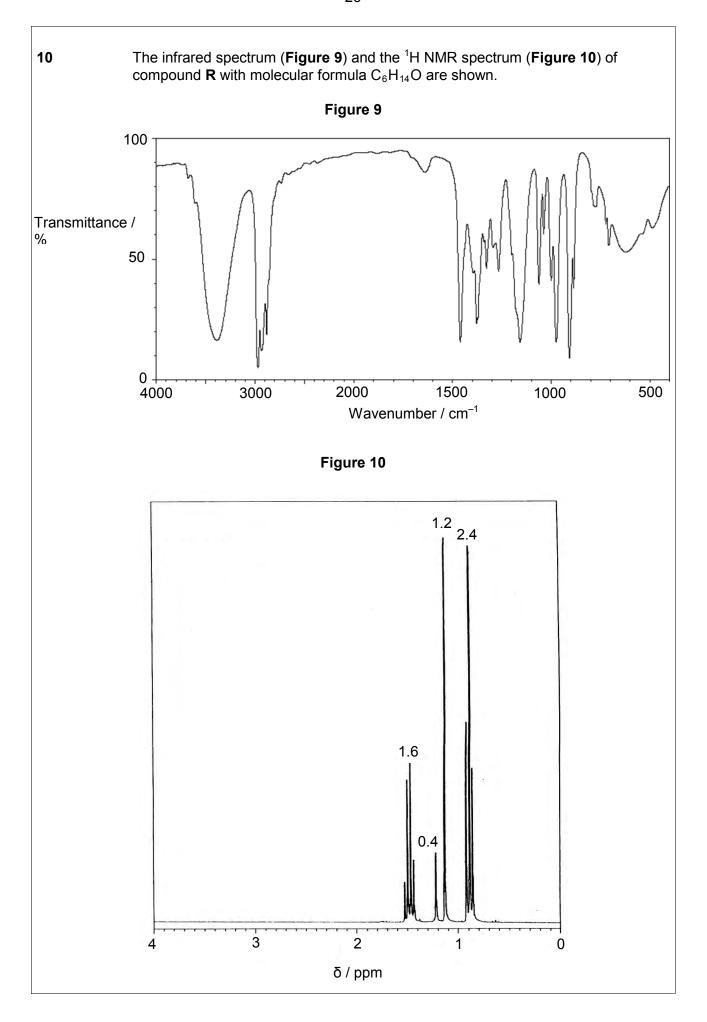
[5 marks]

Name of mechanism	

Mechanism

0 9 . 2	The product of step 1 was purified by recrystallisation as follows.
	The crude product was dissolved in the minimum quantity of hot water and the hot solution was filtered through a hot filter funnel into a conical flask. This filtration removed any insoluble impurities. The flask was left to cool to room temperature.
	The crystals formed were filtered off using a Buchner funnel and a clean cork was used to compress the crystals in the funnel. A little cold water was then poured through the crystals. After a few minutes, the crystals were removed from the funnel and weighed.
	A small sample was then used to find the melting point.
	Give reasons for each of the following practical steps. [4 marks]
	The minimum quantity of hot water was used
	The flask was cooled to room temperature before the crystals were filtered off
	The crystals were compressed in the funnel
	A little cold water was poured through the crystals
	Question 9 continues on the next page

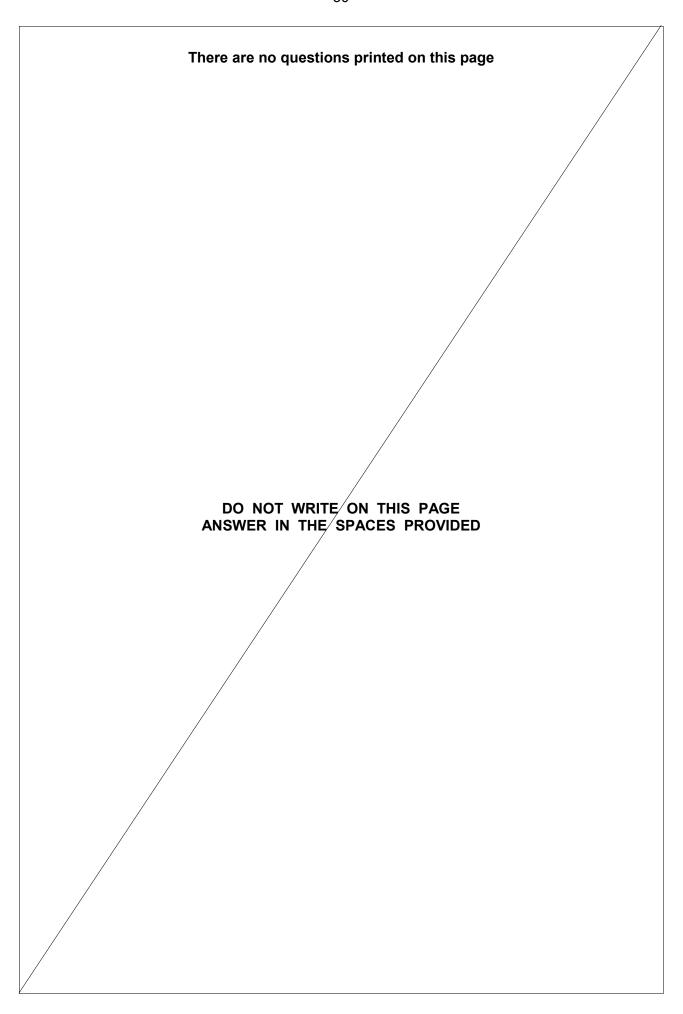
0 9 . **3** The melting point of the sample in Question **9.2** was found to be slightly lower than a data-book value.

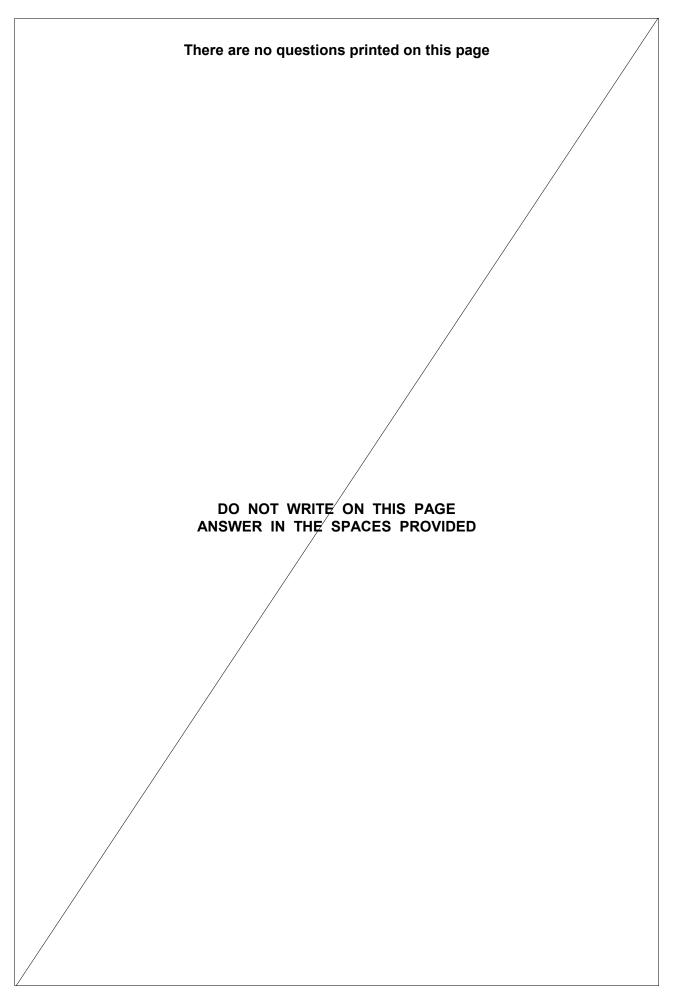

Suggest the most likely impurity to have caused this low value and an improvement to the method so that a more accurate value for the melting point would be obtained.

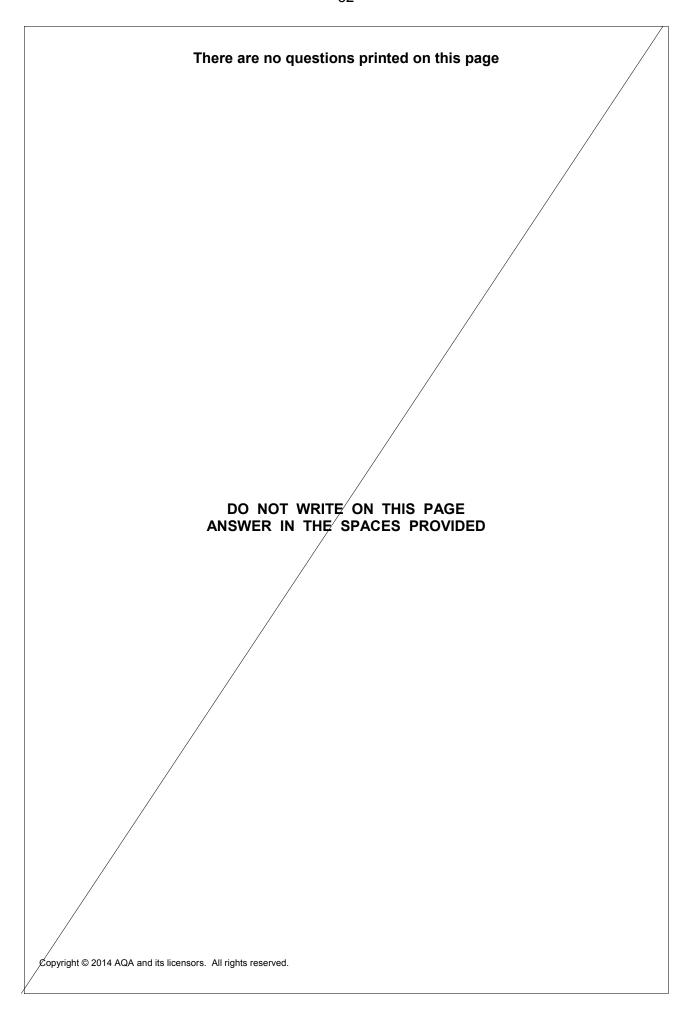
[2 marks]

Figure 8 is repeated here to help you answer the following questions.

Figure 8


0 9 . 4	In an experiment starting with 5.05 g of phenylamine, 4.82 g of purified pr were obtained in step 1 .	oduct
	Calculate the percentage yield in this reaction. Give your answer to the appropriate number of significant figures.	[3 marks]
	Percentage yield =	%
0 9 . 5	A reagent for step 2 is a mixture of concentrated nitric acid and concentral sulfuric acid, which react together to form a reactive intermediate. Write an equation for the reaction of this intermediate in step 2 .	ated [1 mark]
0 9 . 6	Name a mechanism for the reaction in step 2 .	
0 9 . 7		[1 mark]
0 9 . 8	Identify the reagents used in step 4.	[1 mark]




1 0	The relative integration values for the NMR peaks are shown on Figure	10.
	Deduce the structure of compound R by analysing Figure 9 and Figure Explain each stage in your deductions.	10.
	Use Table A and Table B on the Data Sheet.	[Q marke]
		[8 marks]
	Turn over for the next question	

11	Butanone is reduced in a two-step reaction using $NaBH_4$ followed by dilute hydrochloric acid.
1 1 . 1	Write an overall equation for the reduction of butanone using [H] to represent the reductant. [1 mark]
1 1 . 2	By considering the mechanism of the reaction, explain why the product has no effect on plane polarised light. [6 marks]

12	But-1-ene reacts with a reagent of the form HY to form a saturated compound.
1 2 . 1	Suggest a reagent of the form HY which reacts with but-1-ene. [1 mark]
1 2 . 2	Name and draw a mechanism for the reaction in Question 12.1. [5 marks]
	Name of mechanism
	Mechanism
1 2 . 3	Explain how three isomeric products are formed when HY reacts with but-1-ene. [3 marks]
	.
	.
	END OF QUESTIONS

